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The internal time operator M is an alternative to the usual dynamic time, an 
independent parameter of motion. Even when the dynamical entity is the 
three-geometry 13)G and we are concerned with its evolution in superspace (the 
problem of cosmological evolution), dynamical time remains an independent 
parameter associated with a choice of lapse and shift functions. The quantity M 
is, on the contrary, an ensemble-dependent parameter related to the "age" of a 
process: the entirety of the ensemble's evolution. With this different view of time 
as age, we seek a geometrical counterpart to M for the ~ as an "ensemble." 
For a closed negatively curved universe, a Lyapounov function can be established 
which allows an M to be defined for the Robertson-Walker universe. The time 
component of superspace momentum %,, is introduced, and we identify its 
conjugate energy 0S/0%,, with dissipation due to the evolving universe. A 
geometrical counterpart of M is introduced by a conformal invariant F. This 
quantity simultaneously expresses (i) the topological feature of orientation-pre- 
serving transformations, and (ii) the Hamiltonian treatment of dissipative sys- 
tems. This dual character of F, which links topological change to dissipative 
systems, suggests a geometrical basis for M. In this sense irreversibility is 
incorporated into the geometric structure of space-time, along with gravitation. 

1. I N T R O D U C T I O N  

T h e r e  is a f u n d a m e n t a l  l ink b e t w e e n  " i n t e r n a l  t i m e "  and  c o s m o l o g y .  

Spec i f i ca l ly ,  an  in t e rna l  t ime  o p e r a t o r  has  recen t ly  b e e n  i n t r o d u c e d  to 

c h a r a c t e r i z e  t he  e v o l u t i o n  of  the  R o b e r t s o n - W a l k e r  un ive r se  ( L o c k h a r t  

et al., 1982). Th i s  i n t e rna l  t ime  d i f fers  p r o f o u n d l y  f r o m  p r o p e r  t i m e - -  

d y n a m i c a l  t i m e - - a s  m e a s u r e d  by  an ex te rna l  c lock  m o v i n g  wi th  a par t ic le .  

In  th is  p a p e r ,  we  will  e x a m i n e  the  geometr ical  s ign i f i cance  o f  in t e rna l  t ime  

a n d  its c o n t r a s t  w i th  c lock  t ime.  

T h e  i n t e r n a l  t i m e  o p e r a t o r  acts  on  the  p h a s e - s p a c e  d i s t r i b u t i o n  func-  

t ion  a n d  is c a n o n i c a l l y  c o n j u g a t e  to the  L iouv i l l e  g e n e r a t o r  o f  m o t i o n .  F r o m  
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this operator, one can associate an age with the distribution function which 
corresponds to a decreasing H function. Thus, irreversibility has its micro- 
canonical basis in the internal time. Further, the time variable, ?~(t), 
associated with internal time is a nonlinear function of clock time t. It has 
been introduced into cosmology because it provides the possibility of 
avoiding the problem of a singularity due to gravitational collapse predicted 
by Einstein's theory. Proper clock time is not well defined near the singular- 
ity, and in the words of Lockhart et al. (1982). 

It seems more appropriate to introduce a time concept which, unlike proper time, 
does not involve the time measured by an external clock carried by an observer 
or particle, but is related to the intrinsic properties of the motion of the particle 
itself. In other words, the new time concept we seek should refer in some suitable 
sense to the "internal time" associated with the particle's motion. 

Internal time focuses attention on the age of a process, such as the 
evolution of an ensemble, and thus emphasizes a view of time as 
duration--an indivisible whole. There are deep philosophical issues associ- 
ated with this view, issues evoking the names of Whitehead, Bergson, and 
Heraclitus. Prigogine (1980) has characterized the view as the "physics of 
becoming." Rooted in the phenomenological basis of thermodynamics, the 
concept of internal time is actually broader and stands complementary to 
the "physics of being": classical, relativistic, and quantum physics. It is a 
fresh conception of time offering opportunities to reexamine critical prob- 
lems. As Wheeler (1982) says ". . .  in the profound issues of principle that 
confront us today, no difficulties are more central than those associated 
with the concept of time." 

As the present work investigates the link between internal time and 
cosmology, it respects the tradition of physics as geometry. The evolution of 
scientific thought leading to Einstein's geometric theory of gravity may be 
extended to encompass irreversibility if there is the possibility of any 
geometrical significance in internal time. What would be the features of, for 
example, a geometric counterpart to the age of the universe? This geometric 
feature of the manifold would express cosmological lifetime and the irre- 
versible evolution of the universe. How would this geometric internal time 
differ from the conception of dynamical time in general relativity? 

In the following section we review the application of the internal time 
operator to cosmological evolution for the specific case of the Robertson- 
Walker model. Next this is contrasted with a review of dynamical time in 
general relativity and the evolution of space-time governed by Einstein's 
law. We then return to discuss internal time, irreversibility, and dissipation. 
A key development links dissipative structures to topological change, and 
we conclude with a geometric (topological) basis for time as age. 
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2. COSMOLOGICAL INTERNAL TIME 

The key ideas which allow an internal time operator M to be con- 
structed for a cosmological model are (i) geodesic flows on a compact 
manifold of negative curvature are known to be K flows (Sinai, 1960), and 
(ii) geodesic flow on a four-manifold can be reduced to geodesic flow on a 
three-manifold under special conditions. Geodesic flow carries every line 
element along the geodesic which defines the line element at a point. For a 
Riemannian volume element dV and differential dO determined by geodesic 
directions, the invariant measure d/~ in a geodesic flow is d/~ = dVdO. 
Geodesic flow on a four-manifold may be reduced to geodesic flow on a 
three-manifold by utilizing the Robertson--Walker metric: 

g0o = - 1, gij = R2(t)3tij 

= + } o )  

where i, j = (1,2, 3). Lockhart, Misra, and Prigogine (1982) have shown that 
the three spatial coordinates x~(a) of unconstrained particles follow geo- 
desic motion in the three-dimensional hypersurface with metric ~,~j. The 
resulting three-surface, with negative curvature, may be compactified to give 
a nonstandard cosmology in the sense that the space-time is not globally 
isotropic but is locally isotropic. 

Geodesic flows on a compact manifold of constant negative curvature 
are K flows (Wolf, 1977). K flows are flows which exhibit a high degree of 
instability. For example, the distance between adjacent geodesics increases 
exponentially. Thus, if L ( t ) =  [gijAxi(t)A.icJ(t)] 1/2 is the general spatial 
distance between geodesics of particles moving with respect to the cosmo- 
logical fluid then 

Lo( t ) = [ 3'ijAxi( t ) AxJ( t )] 1/z = L(  t ) / B (  t ) (2) 

is the distance between geodesics projected in the fixed three-dimensional 
hypersurface with metric ~,~j [where B(t)  is a time dependent scale factor]. 
Change of variable with the affine parameter ~, t ---, ~(t),  gives 

L = d L / d t  = + ( c X ) L  (3) 

where c is a positive constant. The second term is due to geodesic instability 
based upon negative curvature. The evolving distribution of particles in the 
universe thus contains an element of instability characterizing K flow. 
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K-flow instability permits the introduction of a variable, T (related to a 
Lyapounov function), which may be interpreted as "internal cosmological 
time." It is a nonlinear function )~(t) of proper clock time t. T satisfies the 
relationship 

[ T, U x ] = ~U x (4) 

where Ua is the unitary group induced by the above-mentioned projection. 
It has the property 

U~'TU x = T +  tI  (5) 

which expresses the feature that average internal time (T)  given by 

(6) 

(p being the ensemble distribution function) advances with increasing clock 
time t. 

Describing cosmological evolution with the internal time operator T 
acting on distribution functions introduces thermodynamic considerations. 
The average ? of the positive constant c appearing in the geodesic separa- 
tion L ( t )  is equal to the K entropy of the geodesic flow. In the following 
section we consider cosmological evolution from the perspective of dynami- 
cal (clock) time. This is the evolution of the universe as governed by 
Einstein's law. 

3. COSMOLOGICAL EVOLUTION ACCORDING TO 
GENERAL RELATIVITY 

Einstein's field equation G,,,, = c4/GT., ,  couples the distribution of 
mass-energy, which is expressed by the tensor T,,., to the geometry of 
space-time which is expressed by the curvature tensor G,~,. This geometric 
feature of the manifold, its curvature, is physically manifest in the phenome- 
non of gravitation. In the words of Wheeler (Misner et al., 1970), " . . .  matter 
here curves space here... To produce a curvature in space here is to force a 
curvature in space there .... Thus, matter here influences matter there." The 
incorporation of gravity into the geometry of space-time validates a lengthy 
intellectual history of physics as geometry. 

Einstein's equation also governs the evolution of the distribution of 
mass-energy and, accordingly, the evolution of the geometry of space-time. 
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The curvature of space-time is therefore not static. Geometry poses a 
problem in dynamics. In a formulation of geometrodynamics (Wheeler, 
1962) associated with Arnowitt, Deser, and Misner (1962), and also Kuchar 
(1972), one specifies an initial configuration of space-time geometry and a 
final configuration. The intermediate configurations which are dynamically 
allowed by Einstein's law specify the evolving geometry. This extremum 
approach to general relativity is based upon the variational principle first 
described by Hilbert. The action integral 

I =  f L # d 4 x =  f ( - g ) l / Z L d 4 x  (7) 

involves a Lagrangian which depends upon the scalar curvature invariant R 
in the fashion 

L = (c3/16~rG)R (8) 

The extremal principle 81 = 0, gives the action S = I (extremum). 
The result of investigations (Dirac, 1959; Wheeler, 1964; Misner, 1972) 

is that the dynamic entity of general relativity is not four-dimensional 
space-time (as one might expect), but the three-geometry ~3)G with metric g,j 
(i, j=1 ,2 ,3 ) .  A three-geometry is the equivalence class of diffeomorphic 
spacelike slices for an event P: a class of three-metrics g~j which are 
equivalent to each other under coordinate transformations. The action S is 
extremized between initial and final three-geometries ~3~G. For a "thin 
sandwich" of initial and final three-geometries, (3)G 1 and (3)G2, the relative 
spacing and orientation of the two hypersurfaces is expressed by lapse and 
shift functions, N and N,, respectively. These lapse and shift functions 
relate the projection of the three-metric gij, tO the four-metric g,,,,, such that 

gi j (dx i+ Nidt ) (dxJ+ N J d t ) - ( N d t ) Z = g . ~ , d x " d x  b (9) 

and 

goo go* = ( N~N s - N 2) N k 

g~o gi, N~ 
(lO) 

They allow an extrinsic c u r v a t u r e  Kij of the three-geometry to be expressed 
as 

Kij = ( 1 / 2 N  )( Nil j + Nil i - Ogij/Ot ) (11) 

A geometrodynamic field "momentum" rr~j which is conjugate to the 
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geometrodynamic field "coordinates" g~j of the (3)G can also be defined as 

%j = O S / a g q  (12) 

A Hamiltonian can be formed from these coordinates and momenta, 
H(~rU, go) and its covariant derivative is 

Hi(,n.iJ gij ) = -27rUlj (13) 

According to Arnowitt, Deser, and Misner, the action principle Lagrangian 
becomes, in the above terms, 

~ e  = - g u O r r i J /  Ot - N H  - N i H  ~ + ,~*~ (14) 

The first term may be reexpressed 

- , ,  a ~ ' J / a t  = - a / a t ( g , f , )  + ~ , a s , ,  / at (15) 

to focus attention on variation of the three-metric gu and the full time 
derivative of the first term. At this point, a very important abridgement is 
made. The variation of action S depends only upon a variation in the 
three-geometry, 

as = f ,~i,ag,j d3x (16) 

since the dynamic entity is the ~ The full time derivative is dropped from 
the Lagrangian because such a time variable is supplemental to the proper 
time separation of initial and final hypersurfaces expressed in the extrinsic 
curvature Kij of the (3)G's. No additional time variable is required in the 
dynamics as usually posed, so the first term of equation (14) is neglected. 
Thus, "all the information about time relevant to general relativity is 
contained in the three-geometry" (Misner et al., 1970). 

Contrasting the action variational (16) of general relativity with the 
corresponding variational from elementary mechanics 

3 S  = p 3 x  - E 3 t  (17) 

(where the momentum p corresponds to ~r'J and the coordinate x corre- 
sponds to gu)' one notes the absence of an energy E. Such energy is the 
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time rate of change of action: 

E = - O S / O t  18) 

and is related to dispers ion  and propaga t ion :  

E = H ( p , x )  19) 

This energy of propagation is neglected in the dynamics of general relativity 
because all information about time which is relevant to that theory is 
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evolution of space-time forms a trajectory. This space is called "superspace" 
and every point of superspace corresponds to a three-geometry {3)G. Fisher 
(1970) has constructed a model superspace which is the quotient space 
Pdem(M)/Diff(M). Riem(M) is the space whose points are nonsingular, 
Riemannian metrics on M, and Diff(M) is the group of diffeomorphisms of 
M acting on Riem(M) to transform each three-metric gu according to the 
usual transformation law under coordinate transformations. S(M) is not 
itself a manifold and two superspaces, S(M1) and S(M2), over two mani- 
folds of different topologies are separate spaces. The DeWitt propagation 
law: 

g'/2[�89 (20) 

does not allow propagation from S(M 1) to the differing S(M 2). In order to 
construct a hybrid superspace which would allow propagation between 
differing topologies, DeWitt (1972) has obtained an "extended" superspace. 
The points of extended superspace carry more information than the three- 
geometries; information which is related to topological transition. 

In the next section we exploit a result of Kiehn (1974) that dissipative 
systems may be associated with topology transition. If the dispersion energy 
neglected by geometrodynamics is linked to internal time, which is the basis 
of irreversible dissipative systems, one links internal time to topology 
transition via propagation in extended superspace. It is expected that the 
extended superspace would then consist of points which carry more in- 
formation than the three-geometries. The additional information would be 
related to an aspect of time "irrelevant to general relativity." This internal 
time expresses the evolution of space-time geometry-the evolution of the 
universe-differently than dynamical clock time. 

4. INTERNAL TIME AND IRREVERSIBLE 
DISSIPATIVE SYSTEMS 

The theory of irreversibility of Prigogine et al. (Misra et al., 1979) 
allows particular entropy increasing evolutions-previously described by 
stochastic methods-to be connected to deterministic dynamics via a non- 
unitary similarity transformation A. Thus, the time evolution of a distribu- 
tion function p, given by the Liouville equation (deterministically) 

iOp/Ot = Lp (21) 
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is acted upon by the transform p ---, ~ = Ap to give 

iO~/Ot = dPlb, r = ALA-~ (22) 

The nonunitary requirement on A makes the functional 

= flpl ( 2 3 )  

a Lyapounov function. A dynamical system exhibiting a high degree of 
instability, thus admitting a Lyapounov variable, is the K flow. The 
geodesic flow for the Robertson-Walker universe is an example of K flow 
and is rapidly divergent. 

For K flow there exists an operator time T which satisfies the commu- 
tation relation 

i [ L , T ] = I  (24) 

One can obtain a Lyapounov variable which is a monotonically decreasing 
function of T, 

M = M ( T )  (25) 

and gives the nonunitary transformation A: 

A = M x/z (26) 

The operator M acting on the distribution functions p then gives a mono- 
tonically decreasing inner product 

(p, Mp) = f p*Mp d~ (27) 

This implies the commutator 

i[L,M]<~O (28) 

The dynamical (Lyapounov) variable M expresses the intrinsic irreversibility 
of dynamical evolution for the case of K flow. This internal time operator 
M does not exist for all systems, but for the evolution of the universe given 
by the Robertson-Walker metric, M can be introduced. The dynamical 
evolution of that cosmological model is thus equivalent to a dissipative 
irreversible evolution under the similarity transformation A. 
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Kiehn (1974, 1975) has made an extension of Hamilton's principle to 
include dissipative systems by describing those systems with a closed integral 
of action which is a parameter-dependent conformal invariant of motion. 
Conservative systems are described by an independent absolute invariant of 
motion. He has shown that trajectory continuity is explicitly dependent 
upon a (conformal) dissipation function F and the conformal function is an 
invariant of orientation-preserving deformations. Thus dissipative systems 
may be associated with topological transition. 

The vanishing of the Lie derivative of an object w, 

s = 0 (29) 

means that w is invariant with respect to propagation down the trajectories 
of the vector field V= (p , ,  f, ,1). If the object is the action S and S admits 
an integrating factor fl such that flS is an absolute invariant with respect to 
a parameterized vector field gV in the above sense, i.e., 

s = 0 (30) 

then the action is con formally invariant: 

s S = FS (31)  

Nonadiabatic systems are treated by the introduction of this conformal 
dissipation factor F. The conformal invariant may be expressed 

- F / y  = O(lnfl)/Ot + v~O(lnfl)/Oq u + LO(lnf l ) /Op# (32) 

where, ( r  p~', r )  is the phase space. 
The Lie derivative may be constructed in terms of the interior product 

(i)  and exterior derivative (d) operators 

s = i( TV)dS  + di( TV )S (33) 

K.iehn has focused attention on the form of the first term to obtain 
constraints on the vector field V which leave the closed integral of action S 
conformally invariant for a given parameterization 3': 

Thus 

(34) 

r s  } = o  (35) 
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and by equation (33) 

~ {  i( y V ) d S  + di( g V ) S -  FS } = 0 (36) 

The middle term is an integral of a perfect differential and vanishes over a 
closed cycle z 

~ d i ( ~ V ) S  --- 0 (37) 

so we are left with 

~ { i ( y V ) d S -  r s }  = 0 (38) 

By DeRham's  theorem the integrand here is a perfect differential -dP,  
vanishing over the closed cycle z so 

i ( ' ~ V ) d S -  FS = - dP or 

i (3,V)dS = F S -  dP (39) 

This constraint gives a generalized vector field of which the extremal field, 

i ( ' yV)dS=O (40) 

is a special case. Furthermore, equation (39) defines an equivalence class of 
vector fields which are generators of a homotopy, where i(,IV) is the 
homotopy operator. In this sense then a conformal invariant F is an 
invariant of an orientation-preserving deformation. Thus dissipation may be 
linked with topological change (Kiehn, 1974, 1975). 

The introduction of internal time to the problem of cosmological 
evolution, for the Robertson-Walker  universe, entails an evolving distribu- 
tion of particles (the cosmological fluid) which is highly unstable. This rapid 
divergence can also be illuminated via Kiehn's extension of Hamilton's 
principle. 

Consider the evaluation of equation (39) for the vector field V =  
(v ' ,  f~, 1). The Hamiltonian equations are 

v ~' = &l~/Op~, + ( l / y ) ( O P / a & )  (41) 

f~= - 3~ff /3q ~ - ( 1 / ~ l ) ( 3 P / O q ~ ) + ( F / y ) p ~  (42) 
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and 

r{&(o.,~/Op.)-..'e'}-(oP/o.~+{P,~})=o (43) 

where (P,  ..'~'} are Poisson brackets and (p.,  q~, r)  is the phase space. 
The variation of the Hamiltonian W down the nonadiabatic flow yV is 

the Lie derivative 

s = { r ( a e ) / v  + (1 /v ) (ap /a~)+  aae/a~ } (44) 

The density on phase space (&,  q~, r) is 

m = t*( q~, p~, r ) dqU dpu (45) 

and its variation s involves a continuity term /3. This term is de- 
fined as 

/3= ~ g + - - +  f (46) Oq u 3p~ 

and the condition of contmuity,/3 = 0, may be combined with the Hamilto- 
nian equations (41)-(43) to require 

~ d---7 + ( y, ..~ } + F+p~, = 0  (47) 

It should be noted that the perfect differential term P does not appear 
explicitly here. Further, for the case {~,, )Y} = 0 and &OF/O& = 0 we get 

d(Inp~)/dr = - F / y  (48) 

Thus the conformal dissipative factor F is related to a rapidly diverging 
evolution of the distribution t~. 

Extending this result to the cosmological problem is possible when we 
consider the phase space (& ,q" , r )  goes over to a "super" phase space 
(%j, g ' C M r ) )  where the "coordinates" are the three geometries ~3~G and the 
"momenta"  are the superspace momentum %j. The Hamiltonian a~ be- 
comes the "super-Hamiltonian" H and the density refers to geodesic 
spacing for particles moving with the cosmological fluid. As in Section 2, we 
obtain a rapidly divergent evolution. 

The link between topology and dissipative systems suggests a geometri- 
cal counterpart to internal time M of the universe. The dissipative energy of 
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the evolving aging universe may be related to dispersion of the propagation 
in grand superspace of many topologies. These aspects of time will be 
examined next. 

5. AGE, GEOMETRY, AND ENERGY 

The evolution of the universe may be described with an emphasis on 
dynamical time--clock time--via general relativity and its modern formula- 
tion in geometrodynamics. In this conventional description, the dynamic 
entity is three-dimensional space with intrinsic and extrinsic curvature: the 
three-geometry ~ The arena for the dynamics is superspace in which 
every point is a different configuration of (3)G. Associated with this geo- 
metrodynamics is a super-space momentum %j. The "time" variable of 
geometrodynamics is contained in the extrinsic curvature K U of the t3~G 
(that is, the lapse and shift functions N and N ~) and is somewhat like 
classical clock time. Classical clock time is an independent parameter of 
motion. Similarly, the lapse and shift functions, N and N ~, are independent 
parameters in geometrodynamics. As we move along a trajectory in super- 
space, they allow us to freely choose to move forward or backward, faster or 
slower. Furthermore, there is no time component of superspace momentum 
%j ( i , j=1 ,2 ,3 ) ,  just as there is no time component in the classical 
momentum p~ of a particle. Such a time component ~'~ would entail the 
use of "four-geometry" (4)G, but this is not possible in geometrodynamics 
since, "all information about time which is relevant to general relativity is 
contained in the three-geometry O)G." Therefore this additional time com- 
ponent is neglected in relativity. The energy conjugate to the time compo- 
nent of momentum is also neglected. 

It is tempting to expand upon geometrodynamics and make a generali- 
zation like the theories of special and general relativity. Let us suppose that 
irreversibility is a geometric feature of the space-time manifold in a sense 
similar to the incorporation of gravity into space-time by general relativity. 
The theory is: the irreversibility of the evolving universe is due to space-time 
topology F while gravity, according to relativity, is due to space-time 
curvature, G,,~,. In other words, the internal time M which characterizes 
irreversible cosmological age has its geometric counterpart in space-time 
topology. 

One of the features of a geometric counterpart to internal time M is the 
extension of Wheeler's notion of superspace to a grand superspace of many 
topologies. Of all possible evolutions of the universe, the allowable evolu- 
tions would be restricted to those trajectories in grand superspace which 
preserve the conformal invariant F. Each point of the extended superspace 
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contains more information than the three-geometry alone; specifically in- 
formation about topology transition. In tum, this additional information-- 
which has its origin in cosmological age (space-time topology)--can be 
assigned to the time component of momentum %~. This assignment repre- 
sents an aspect of time (duration) which is meaningful and manifest in 
irreversibility yet different from dynamic (clock) time. The associated en- 
ergy conjugate to the time component 7r44 of the momentum may be 
identified with the dispersion. These details will be discussed in another 
publication. 

The treatment of irreversible evolution (at least for the case of the aging 
cosmological fluid of the Robertson-Walker universe) in terms of space-time 
geometry does not resort to the statistical notion of entropy. That quantity 
is a macro quantity which emerges only for many particles. It does not enter 
conventional dynamics for a few particles, and it is interesting to ask 
whether the proposed geometrical basis of irreversibility has any "entropy- 
like" effect for the dynamics of a few particles. According to the theory 
presented here, this is equivalent to asking about the relation of local 
features of space-time geometry to global (topological) features. 

The Lorentz signature on the metric (+  - - - )  is a global feature of 
space-time related to the orientation of hypersurfaces (Hawking and Ellis, 
1973). If gu is a metric in the three-geometry ~ induced by a metric guo 
of the four-geometry in which the <3)G is imbedded, then gik is Lorentz 
when gUOTLr L > 0. This gives a three-geometry <3~G which corresponds to a 
timelike hypersurface orientation. (Other orientations are possible.) Recall 
the key idea which allowed the link of irreversibility and geometry: the 
identification of the dissipative conformal invariant F as an invariant of an 
orientation-preserving deformation. We conclude that there is a connection 
between the metric signature and irreversibility. The Lorentz signature is 
also a "local" feature of space-time associated with the causal ordering of 
events, so we recognize the local manifestation of irreversibility in the causal 
quality of interactions of arbitrarily few particles. 

This connection of irreversibility and causality through topology may 
be seen in the following way. A point 0, and its arbitrary small neighbor- 
hood, U0, is located from another point P, and its small neighborhood, Up, 
by the interval s. Let a space be defined as the union of the neighborhoods 

Xlx ~ U o U Up (49) 

Let causal connection by a light signal of Uo and Up determine the topology, 
S(I) ,  on the space. An isotope (X, S) is formed. A certain time interval, ts, 
is required for a light signal to connect points of the neighborhoods 

ts = s / c  (50) 
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(where c is the speed of light). At a time t < t s (here is the dynamical view 
of time as moments), the points of one neighborhood cannot be connected 
by light signal with the points of the other neighborhood, so a topology, S1, 
is established on X: 

V t  ~ t < t , ] U  o A Up = ~  then (X, S1) (51) 

At a later time t > t,, it is possible to connect points of the two neighbor- 
hoods with a light signal, so a new topology, $2, on X is formed 

V t  ~ t > t , 3 U  o n Up ~ 0  then (X,  $2) (52) 

Thus the time interval At = t, is a transition of topology: 

At = ( X, $2) ~ ( X, $2) (53) 

6. CONCLUSION 

We have examined the internal time operator  M for the 
Robertson-Walker  universe and proposed its geometric counterpart. This 
gives a theory of cosmological irreversibility due tO the geometric (topologi- 
cal) structure of space-time. By this account, the dynamics of general 
relativity appears as an approximate case assuming the physical irrelevance 
of irreversibility and topology. The possibility of this geometrical signifi- 
cance for internal time is inviting. Internal time differs profoundly from 
clock time, but if it could be incorporated in a geometric "world view," 
along with gravitation, we would arrive at a deeper and broader understand- 
ing of the unity o f  time and the world. 

R E F E R E N C E S  

Arnowitt, R., Deser, S., Misner, C. M., (1962). In Gravitation: An Introduction to Current 
Research, L. Witten, ed. (Wiley, New York). 

Bergson, H. (1975). The Creative Mind (Littlefield, Adams and Co., Lotowa, New Jersey). 
DeWitt, B. (1972). In Magic Without Magic (W. H. Freeman, San Francisco). 
Dirac, P. A. M. (1959). Phys. Reo., 114, 724-730. 
Fisher, A. E. (1970). In Relativity, Carmeli, M., Fickler, I. and Witten, L. eds. (Plenum Press, 

New York). 
Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time 

(Cambridge University Press, Cambridge). 
Kiehn, R. M. (1974). J. Mth. Phys., 15, 9-13. 
Kiehn, R. M. (1975). J. Mth. Phys., 16, 1032-1033. 



1024 Neacsu 

Kuchar, K. (1972). J. Mth. Phys., 13, 768-781. 
Lockhart, C. M., Misra, B., Prigogine, I., (1982). Phys. Reo. D., 25, 921-929. 
Misner, C. W. (1972). In Magic Without Magic (W. H. Freeman, San Francisco). 
Misner, C. W., "I'horne, K. S., Wheeler, J. A., (1970). Gravitation (W. H. Freeman, San 

Francisco). 
Misra, B., Prigogine, I., Courbage, M., (1979). Phvsica, 78A 1. 
Prigogine, I. (1980). From Being to Becoming (W. H. Freeman, San Francisco). 
Sinai, Y. G. (1960). Soy. Mth. Dokl., 1, 335. 
Wheeler, J. A. (1962). Geometrodynamics (Academic Press, New York). 
Wheeler, J. A. (1964). In Relativity, Groups and Topology, C. DeWitt and B. DeWitt, eds. 

(Gordon and Breach, New York). 
Wheeler, J. A. (1982). Law without law, working paper, University of Texas (unpublished). 
Wolf, J. A. (1977). Spaces of Constant Curvature (Publish or Perish Press, Berkeley, California). 


